農学のための微分積分学(三浦)

担当教官(所属、所在)
三浦康秀(人文社会科学部環境科学講座)

対象学生 科目の種別 開講学期 単位数
全学科1年次学部専門基礎科目
選択
後期2単位

授業の目標
基本的な関数について、微分、積分を求める方法や、ごく簡単な物事の変化の様子を微分方程式に表現する方法を修得することをこの授業の目標とする。

概要と計画
高校での微積分分野または「農学のための基礎数学」の内容程度の基礎知識を前提として、1変数関数の微分積分を重点とし、多変数関数の微分積分や微分方程式の入門までを講義する。このため、解析学の役割といろいろな関数について触れた後、1変数関数の微分法と積分法を学習し、最後に、多変数の微分積分や常微分方程式の導入部分を学習する。
なお、関連科目として「基礎数学演習」を受講し微積分の計算に習熟することが望まれる。また、この講義の成果を踏まえて「応用数学」等で多変数の微分積分や微分方程式について学習を進めることで、それぞれの専門分野で事象の変化の様子を数学的に記述することに役立つ。
第1回 解析学とは第2回 いろいろな関数
第3〜5回 1変数関数の微分
第6〜8回 1変数関数の積分
第9〜11回 多変数関数の微分積分
第12〜15回 常微分方程式と現象のモニタリング

教室外の学習
講義前には、教科書の予想される授業範囲を一読しておくこと。また、講義後には授業で取り扱った事項の演習問題を次回までに解いてみて、講義内容がきちんと理解できているかどうかを確認しておき、次の時間の初めに小テストを行うので準備しておくこと。

教科書、参考書
教科書:未定
演習書としては、寺田文行・久保創著「演習行列・微積分」(サイエンス社、1,553円)、参考書としては、[図書館指定図書]垣田高夫訳「微分方程式で数学モデルを作ろう」(日本評論社、3,500円)を推薦する。

授業の形式
基本的には講義形式であるが、小テストはほぼ毎回、レポートは各単元ごとに提出してもらう。さらに、通常のレポート以外に無期限のレポートとして、少しじっくりと考えてもらう課題を用意するのでできた人は研究室にもってくること。これは正解になるまでは受理しない。

成績評価の方式
レポートと小テストは30点、期末テストは70点とする。さらに無期限レポートは完全に解けた場合、1題につき5〜10点をプラスする。60点以上が合格である。

履修に当たっての留意点
高校での微積分分野または「農学のための基礎数学」(前期開講)を履修していることが望まれる。