Š¦—βƒoƒCƒIƒVƒXƒeƒ€Œ€‹†ƒZƒ“ƒ^[

ŠT—v ƒAƒNƒZƒX Eˆυ ŠwΆ
Œ€‹†‹ΖΡ ”­s•¨ ƒCƒxƒ“ƒgξ•ρ ’S“–u‹`‰Θ–Ϊ
ŒfŽ¦”Β ƒTƒCƒgƒ}ƒbƒv ƒŠƒ“ƒN ‚¨–β‚’‡‚ν‚Ή

”­s•¨
>”N•ρ 2003 (Vol.6)>SummaryiΧ–E•‘»Œ€‹†•ͺ–μj
m Χ–E•‘» | Š¦—βƒVƒOƒiƒ‹‰ž“š | Ά‘Μ‹@”\ŠJ”­ n

Wang, Y., Y. Saitoh, T. Sato, S. Hidaka, and K. Tsutsumii2003j
Comparison of plastid DNA replication in different cells and tissues of the rice plant.
Plant Mol. Biol. 52(4): 905-913.

In a previous study, we mapped replication origin regions of the plastid DNA around the 3' end of the 23S rRNA gene in rice suspension-cultured cells. Here, we examined initiation of the plastid DNA replication in different rice cells by two-dimensional agarose gel electrophoresis. We show for the first time, to our knowledge, that the replication origin region of the plastid DNA differs among cultured cells, coleoptiles and mature leaves. In addition, digestion of the replication intermediates from the rice cultured cells with mung bean nuclease, a single-strand-specific nuclease, revealed that both two single strands of the double-stranded parental DNA were simultaneously replicated in the origin region. This was further confirmed by two-dimensional agarose gel analysis with single-stranded RNA probes. Thus, the mode of plastid DNA replication presented here differs from the unidirectional replication started by forming displacement loops (D-loops), in which the two D-loops on the opposite strands expand toward each other and only one parental strand serves as a template.

m £page top n